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Abstract 

Millions of people suffer from a shortage of fresh water: the available resources rapidly reduce their 
capacity with the growing demand. Shortage of fresh water in several regions of the Earth is becoming a 
serious problem posing a threat to the mankind evolution and the environment conservation. 

Water and energy scarcity are two major global challenges facing modern society. Right now, almost 
one-fifth of the world’s population is living in areas with water scarcity, and another 1.6 billion people are 
living in economic water scarcity areas because of technical or financial limitations to getting freshwater even 
when water is available. So, water treatment techniques employing solar energy are deemed attractive for 
producing fresh water from impotable water sources, including seawater, river/lake water and contaminated 
water, by safe and sustainable methods. 

Solar-driven desalination in the countries with hot and arid climate can employ abundant and free 
solar energy to produce freshwater from natural water sources, making this technology a promising one to 
solve the water scarcity problem. 

Besides, solar-driven zero liquid discharge (ZLD) desalination from waste brine water has recently 
emerged as a new important application of solar evaporation. Compared with conventional ZLD desalination 
technologies, solar-driven ZLD desalination produces solid salt as the only byproduct and uses sunlight as the 
only energy source, making it less energy intensive, more cost-effective, and affordable. 

This paper considers a concept of a small self-powered solar-driven multi-stage ZLD desalination 
plant based on film evaporation drums and having a desalination capacity of up to 1100 liters of freshwater per 
day. 

KEY WORDS: solar energy, film evaporation drum, multi-stage evaporation, desalination, zero 
liquid discharge, energy conversion. 

Introduction	

Solar energy and water are the two most abundant resources on Earth. Nevertheless, water and energy 
scarcity are two major global challenges facing modern society. Right now, almost one-fifth of the world’s 
population is living in areas with water scarcity, and another 1.6 billion people are living in economic water 
scarcity areas because of technical or financial limitations to getting freshwater even when water is available. 
This circumstance will be much more serious by the year 2025, when it is projected that two-thirds of the 
world’s population will be under water stress conditions, according to the United Nations’ World Water 
Development Report in 2012. Thus, a technology that combines the advantages of freshwater generation, easy 
accessibility, and cost-efficient energy input is of great interest for dealing with this global water crisis, 
especially for people living in off-grid areas [1]. 

Saline seawater is practically inexhaustible resource that makes up 97.5 % of the Earth's water, 
however, its use for household needs and as drinking water is problematic due to high concentration of salts 
dissolved in it. 
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It is no surprise then that one of the principal options to overcome freshwater scarcity is the 
construction of big industrial seawater desalination plants in the coastal areas, particularly, in the Middle East. 

However, large-scale industrial desalination is not a cure-all solution to solve the water stress problem 
in certain regions of the world. According to the recent scientific research published by the UN, approximately 
16 thousand desalination plants produce basically more toxic waste than freshwater. Saline suspension (or 
brine), that is a solution of extracted salts, contains a large amount of copper and chlorine. It is discharged 
back into the ocean or the sea as desalination is completed. The presence of chemicals employed in the 
desalination process makes this hypersaline substance even more toxic, as reported by the researchers in the 
Science of the Total Environment. As the result, dead zones appear in the discharge areas, representing vast 
oxygen-free water areas where neither marine plants nor animals breathing the oxygen dissolved in the water 
can survive. Besides, poisoned water raises the temperature of the coastal waters. And what is more, the 
discharged waste volume exceeds 1.5 times the volume of freshwater produced. Thus, the desalination waste 
in general reaches 50 billion cubic meters of toxic discharge worldwide every year. This amount of brine 
would be enough to cover the entire territory of Florida in 30 cm of discharge. According to the reported data, 
more than half of the brine waste is produced by the oil countries: Saudi Arabia (22%), the United Arab 
Emirates (20.2%), Kuwait (6%), Qatar (5.8%) [2]. 

It seems impossible, however, to completely abandon the use of desalination plants nowadays, because 
the population of many countries, including Africa, the Middle East, and island states, depends on desalination 
technologies. According to the UN data, an estimated quarter of population is living in areas with water 
scarcity. The situation is forecast to be much worse because of aquifers depletion.  

Since 2015, the Global Risks Report of the World Economic Forum is noted to permanently recognize 
"water crises" as one of the global threats. The water stress has several causes, and the annually growing 
Earth's population is one of them. [2] 

The currently in use industrial desalination technology has been existing since 1960s. A new ZLD 
desalination technology can possibly solve the problem of water resources contamination. 

Conventional technologies are not capable of evaporating the feed till dry salt residue. Salt deposits on 
heating surfaces pose a major challenge connected with high salt concentration that hampers heat exchange 
and raises a need of frequent cleaning or mechanical descaling of the heating surfaces.  

Salt deposits on the heating surfaces prevent from providing continuous and sustainable evaporation 
process leading to higher operational costs and poorer performance and efficiency of evaporation plants.  

The proposed drum film evaporator-based (DFE-based) technology [4, 5, 6], providing the 
possibility of multi-stage evaporation and continuous mechanical descaling of the heating surfaces grants a 
solution to the major issues of solar-driven desalination, in particular: 

 - create ZLD desalination technology, 

- achieve net-zero carbon emissions of desalination process, 

- provide easy operation without sophisticated constructions and complex equipment, 

- use a multi-stage desalination principle. 

A zero liquid discharge problem can be solved in two stages. At the first stage, a DFE evaporates the 
feed to obtain high-concentration brine (approximately 300 g/L, which corresponds to a salt content of the 
Dead Sea water). This brine requires minimum cost to withdraw the entire unbound water and obtain dry solid 
salt, creating minimum problems with salt deposits on the evaporators' surfaces and in the drain piping. At the 
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second stage, the high-concentration brine is evaporated till solid dry salt on an open-air platform heated from 
below, where the moisture is removed from the brine into the atmosphere as due to the insolation on the 
platform, so as due to the heating of the platform with extraction steam supplied from the final DFE stage. 

Thus, a new design of the solar-driven evaporator opens the possibilities for more environmentally 
friendly ZLD desalination, treatment of brines with high salt content at the conventional desalination plants, as 
well as purification of highly-saline industrial wastewater. 

New	type	of	evaporators	

Many types of evaporators are known to be used in distillation, including:  

 horizontal tube evaporators,  
 horizontal spray film evaporators,  
 long tube vertical evaporators,  
 short tube vertical evaporators,  
 basket type evaporators,  
 forced circulation evaporators,  
 agitated thin film evaporators or wiped film evaporator, and  
 plate evaporators. 

 

However, we propose a new type of evaporator to be employed in the problem of energy-effective 
solar-driven ZLD distillation of saline water, i.e. a drum film evaporator (DFE). 

With respect to the abundant, renewable and widely spread solar energy and water sources, this 
environmentally-safe net-zero carbon process without sophisticated constructions makes solar-driven 
evaporation one of the most promising technologies to produce freshwater and to convert energy. The solar-
driven multi-stage desalination plant under consideration is designed, first of all, for household (individual) 
application and, prospectively, for commercial application in the hot and freshwater deficient countries. 

The feasibility of the technology under consideration was verified by computational analysis for 
favorable conditions of hot and arid climate, corresponding to the climate in Cairo, Egypt [3], (Figure 1). 
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The heat transfer coefficient α [W/(m2.К)] for steam condensation on the external surface of the 
rotating drum is calculated by formula [4] derived for laminar film motion (conservatively): 

∝௖௢௡сൌ 0,728 ൈ ට
௚	௥	ఘ	ఒయ

ఔೢ	ௗమ∆௧ೢೡ

ర
   (1) 

where 

where g is the free fall acceleration, m/s2; 

r is the specific heat of steam generation, kJ/kg; 

ρ is the water density kg/m3; 

λ is the thermal conductivity, W/(m·К); 

 is the kinematic viscosity of water, m2/s; 

Δtwv is the temperature difference on the fluid film, °С;  

d2 is the outer diameter of the evaporation drum, m.  

According to [14], the heat transfer coefficient of the film evaporators with the surface evaporation for 
q < 8 kW/m2, Re =2000...8000 and Г=400…2000 kg/(m·h) is recommended to be selected using the equation 

∝௘௩ൌ 0,0067
ఒೢ
ఋೢ
ሺ0.25	ܴ݁ሻ଼ହ଺       (2) 

Where  

λw is the thermal conductivity of fluid film, W/(m·К);  

δw is the thickness of the liquid film, m; 

Re is Reynolds criterion for fluid film. 

The fluid film thickness is determined by the ratio [14] 

ቀଷ
ସ
	
ఔమ

௚
ቁ
ଵ
ଶൗ
ܴ݁

ଵ
ଷൗ      (3) 

 

where v is the kinetic viscosity of the solution, and g is the gravitation constant. 

Reynolds criterion for fluid film is determined by the ratio [14]; 

ܴ݁ ൌ
ସ	Г

ఓ
    (4) 

Where µ is the dynamic viscosity of the solution, and Г is the linear mass irrigation density, defined by 
the formula [14] 

Г ൌ
ீ

П
     (5) 

Where G is the solution flowrate and П is wet perimeter 
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 Since the drum is incompletely filled, the film evaporation area is taken 15% reduced, so the heat 
transfer coefficient of the evaporation used in the calculations is corrected accordingly. 

The heat transfer coefficient of the drum walls is determined by the formula 

ܭ ൌ
଴,଼ହ

భ
ഀ೎೚೙೎

ା
ഃೢೌ೗೗
ഊೢೌ೗೗

ା
ഃ೏೐೛
ഊ೏೐೛

ା
భ

ഀ೐ೡ

    (6) 

 

Let us estimate the material balance of the desalination process. The material balance equation of the 
evaporation process is [9]: 

௦௪ܩ ൌ ௖௢௡௖ܩ ൅ܹ   (7) 

௦௪ݔ௦௪ܩ ൌ  ௖௢௡௖   (8)ݔ௖௢௡௖ܩ

  

Here Gsw, Gconc are the mass flowrates of the input (seawater) and the output (evaporated concentrate), 
kg/s;  

xsw, xconc are the mass fractions of the dissolved solids in the input and in the output;  

W - is the mass flowrate of evaporated water, kg/s.  

Setting the final concentration, one can calculate the mass flowrate of distillate:  

ܹ ൌ ௦௪ܩ ቀ1 െ
௫ೞೢ
௫೎೚೙೎

ቁ    (9) 

 

The heat-balance equation of the evaporator is [9]: 

ܳ ൅ ௦௪ݐ௦௪	௦௪ܿ௣ܩ ൌ ௖௢௡௖ݐ௖௢௡௖	௖௢௡௖ܿ௣ܩ ൅ܹ݅௦௘௖ ൅ ܳ௪௔௦௧ ∓ ܳௗ  (10) 

Where Q is the thermal power for evaporation, W;  

cp sw, cp conc is the specific thermal capacity of the input (seawater) and the output (evaporated 
concentrate), J/(kg К); 

tsw, tconc is the temperature of the input (seawater) at the DFE input and the output (evaporated 
concentrate) at the DFE output, °С; 

tsec is the specific enthalpy of the secondary steam at the evaporator output, J/kg; 

Qwast is the thermal power to compensate the wastage to the environment, W;   

Qd is the dehydration heat, W. 

Thus, the thermal power for evaporation is [9]  

ܳ ൌ ௖௢௡௖ݐ௦௪ሺ	௦௪ܿ௣ܩ െ ௦௪ሻݐ ൅ܹ൫݅௦௘௖ െ ܿ௣	௪ݐ௖௢௡௖൯ ൅ ܳ௪௔௦௧  (11) 

Where cw is the specific thermal capacity of water at tconc, J/(kg К). 
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Secondary steam parameters in the DFEM are determined by the pressure of the primary steam, 
thermal resistance, and heat-exchanging area of the drums. The DFE structure used in the analysis features a 
3.5 mm long aluminum pipe with external diameter of 440 mm and a wall thickness of 10 mm. The area of the 
DFE heat-release surface makes up: 

஽ிாܣ ൎ 3.14 ൈ 0.43 ൈ 3.5 ൎ 4.7	݉ଶ 

The thermal resistance of the drums is determined by the heat transfer coefficients for heating steam 
condensation on the external DFE surface and for evaporation of the solution from the film on the internal 
surface, as well as by the thermal resistance of the thin salt deposit layer with the thermal conductivity 
assumed as λdep = 1.1 W/(m К) (the deposit thickness was assumed 0.15 mm in the calculations) and the 
thermal resistance of the aluminum wall with the thermal conductivity λwall = 150 W/(m К) with the wall 
thickness δwall = 0.01 m. 

To obtain the maximum thermal capacity, the steam generated in the "solar" DFE successively passes 
through three DFEMs, and the total pressure difference of the heating and secondary steam in these modules 
should not exceed the maximum pressure of the heating steam in the "solar" DFE. This pressure is determined 
either by the hydrostatic pressure of the water input to the "solar" DFE from the elevated water supply tank (as 
considered in this case), or by the input water pressure in the input water distribution system. 

For the case under consideration where the water supply tank is located at an elevation of 8 m, Table 1 
gives the calculated distribution of parameters in three DFEM stages, the first of which is heated by the steam 
under the pressure of 0.175 MPa with the flow rate of 52.1 kg/h.  

Table 1 - Calculated distribution of parameters in three DFEM stages 

Parameters 
Value 

first stage second stage third stage 

Heating steam pressure, P1,  [MPa] 0.175 0.149 0.128 

Secondary steam pressure, P2,  [MPa] 0.149 0.128 0.110 

Steam pressure difference,  ΔP, [MPa] 0.026 0.022 0.018 

Saturation temperature, t sat, [К] 
                                             [°C] 

389.0 
116.0 

384.2 
111.2 

379.6 
106.6 

Temperature difference, Δt, [°C] 4.81 4.63 4.44 

Heat transfer coefficient for steam condensation, 
∝conc ,   [W/m2К] 

5282.3 5245.1 5203.9 

Calculated heat transfer coefficient for evaporation, 
∝ev0,   [W/m2К] 

4993.9 4741.9 4498.9 

Assumed heat transfer coefficient for evaporation, 
∝ev0,   [W/m2К] 

4244.8 4030.6 3824.0 

 Thermal resistance for condensation 1/αconc , [(m2 
K)/W] 

0.000223 0.000224 0.000226 

Thermal resistance for evaporation  
1/αev, [(m2 K)/W] 

0.000277 0.000292 0.000308 

Thermal resistance of DFE wall,  
 δwall/λwall, [(m2 K)/W] 

0.000067 0.000067 0.000067 

Thermal resistance of salt deposits, δdep/λdep , [(m2 
K)/W] 

0.000136 0.000136 0.000136 

Heat transfer coefficient, K ,  [W/m2К] 1422.67 1390.41 1357.30 

Heat flux density, qwall,  [kW/m2] 6.85 6.44 6.03 
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Transmission, [W] 31632 29744 27860 

Mass flow rate of evaporated water, [kg/s] 
                                                               [kg/h] 

0.0143 
51.45 

0.0134 
48.09 

0.0124 
44.78 

 

Taking into account the steam (condensate) produced in the "solar" DFE at 32 kW (steam generation 
heat at 0.175 MPa is 2213 kJ/kg), the total mass flow rate of the condensate produced by the plant is  

 	

ܹ ൌ
32	ܹ݇ ൈ ݏ3600
݃݇/ܬ݇	2213

൅ 51.45	݇݃/݄ ൅ 48.09	݇݃/݄ ൅ 44.78	݇݃/݄ ൌ 196,4	݇݃/݄ 

The required flow rate of seawater to concentrate the seawater with the initial salt concentration of 35 
g/kg up to the Dead Sea concentration (300 g/kg) can be found by the formula (9) 

௦௪ܩ   ൌ
ௐ

ቀଵି
ೣೞೢ
ೣ೎೚೙೎

ቁ
ൌ

ଵଽ଺.ସ

ଵି
యఱ
యబబ

ൌ 222.3	݇݃/݄   

In this case the flow rate of concentrate makes up 

௖௢௡௖ܩ ൌ 222.3
௞௚

௛
െ 196.4	

௞௚

௛
ൌ 25,9	

௞௚

௛
ൌ 0.0072	

௞௚

௦
   

If the vaporation thermal capacity drops lower than 32 kW in the "solar" DFE, the vaporation intensity 
of the entire plant will decrease along with the total pressure difference (and, therefore, temperature 
differences) across all DFEMs. 

Using	steam	water	heater	to	increase	the	capacity	of	the	solar‐driven	evaporation	plant	

Pre-heating of the input water before it enters the DFE increases the plant capacity. This is achieved 
by employing a steam water heater which uses the secondary steam of the final DFEM stage as heating steam.  
In the case under consideration, the steam heater features a horizontal shell-and-tube heat exchanger with 64 
tubes ø14×1 mm and 1.5 m long. Steam is supplied to the shell side, partially condenses thus heating the water 
from the feedwater tank which runs in the tubes up to 96.5°C, this water is then distributed to the DFEs for 
evaporation. Large heat-exchanging area makes such heat exchanger immune to salt deposits on the internal 
surfaces of the heat-exchanging tubes, and the design allows easily removing the salt deposits from the tubes, 
if required. 

Predicted parameters of the steam water heater (Figure 10) are shown in the heat transfer fluid diagram 
in Figure 12. 
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Thus, the total heat accepted by the platform from insolation and from the condensation of the third-
stage steam is excessive, so the concentrate has to be moved from the DFE before the salt content reaches 0.3 
kg/kg, particularly at s = 0.247 kg/kg. In this case, the throughput of seawater with the concentration of s = 
0.035 kg/kg will increase from 222.3 to 228.7 kg with the output of condensate unchanged. This decrease in 
salt content of drained concentrate provides more favorable conditions to impede salt depositing on the heat-
exchanging surfaces. 

Since the insolation conditions and, thus, the thermal conditions of the dewatering platform, can vary 
during the day, the need for draining a concentrate batch can be easily determined by measuring the humidity 
of the air above the platform. 

If the salt on the platform has already dried (the humidity detectors register low air humidity directly 
above the platform), short-time opening of the solenoid valve is needed to drain a batch of concentrate from 
the DFE onto the platform. 

Cost‐benefit	evaluation	of	the	proposed	solar‐driven	evaporation	technology	

Practically negligible operating costs can be considered as an advantage of the proposed technology, 
since it contains absolutely no consumables such as sorbing agents, membranes, filtering materials, chemicals, 
including toxic ones, etc.). The only regular operation which requires human involvement is the removal of 
dry or semi-dry salt from the dewatering platform, and which, however, can be easily automated. 

The components design is rather easy to manufacture and transport, the plant modularity significantly 
reduces the cost of individual DFEMs in scaled-up production. 

The cost-benefit evaluation of the plant can be carried out by rough cost calculation of the plant with 
predicted performance. The cost estimate of the basic structural components of the plant is given below. 

 

Materials & Equipment  $ 
  
A single-axis tracking parabolic trough collector 8000 
Gear motors  500 
Drums and hulls 4700 
Flange designs 5000 
Bearings 1500 
Valves 1800 
Frame 1000 
The solar panel 1000 
Tanks 600 
Concentrate dewatering platform 1100 
Pipelines 400 
Mounting 1500 
    
Total Installation Cost  $ 27100 
  

Since the plant is designed (due to its low efficiency) primarily for household (individual) application, 
we do not consider the maintenance-related costs in the estimation.  
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The average daily desalination output would be approximately 1.2 m3 of freshwater, the annual output 
- 429 m3 for hot regions with the average annual insolation of 2300 (kWh)/m2. During the expected service life 
of 60 years, the plant can produce 25730 m3 of freshwater. Then, with the predicted plant cost of $27.1 
thousand, the specific water production cost will be approximately $1.05 per cubic meter. Easy operation and 
no need of consumables can make this cost acceptable. 

Besides, one more substantial argument for using such plants exists. This solar-driven evaporator is 
not only self-sufficient in terms of energy (not bound to any centralized power-supply source), has net-zero 
carbon emission, and operates using zero liquid discharge technology, it is "omnivorous" as well and is apt to 
desalinate and recover brines from the industrial plants that use brackish water reverse osmosis (BWRO) 
desalination and sea water reverse osmosis (SWRO) desalination. With this ability, the plant can solve a 
daunting environmental issue of dead zone formation in brine discharge areas. 

	Conclusion	

Recently, there has been an ever-growing interest in ZLD desalination technologies, since they are 
expected to be an environmentally acceptable means to recover concentrated brine obtained in SWRO, in 
particular, in inland regions where other more conventional recovery options are inexpedient [15]. Usually, the 
techniques to convert liquid concentrate into solid include evaporation pools, crystallizer pans, and spray 
driers. The concentrate shall be treated to prevent scale build-up during secondary reduction, then the brine is 
concentrated and dried [16]. 

The final concentration of  brine and evaporation steps employed in the currently-used technologies 
are very expensive, as a rule, since they are very energy-intensive, have significant carbon footprint or, in case 
of evaporation ponds, require large acreage. So, as a rule, commercial recovery of salts in the existing ZLD 
systems does not make economic sense. Dust salt carried out by the wind and provoking the neighboring soil 
salinization is an environmental issue for evaporation ponds.  

A frenetic change of the desalination technology in the SSDP-DFE plant powered exclusively by solar 
energy will give a solution to the problem of environmentally-friendly ZLD desalination. A shift to relatively 
inexpensive low-efficient but easily maintained plants with expected dry salt output can relieve a majority of 
current problems attributed to desalination plants. 

First of all, the SSDP-DFE technology is aimed mainly at household (individual) application in semi-
arid and extremely arid regions of the planet, since it allows using brines from Sea Water Reverse Osmosis 
(SWRO) desalination as feedwater, thus solving the discharge problem. Transportation expenses to deliver 
brine to SSDP-DFE plants can be an affordable price for the solution of the acute environmental problem. 

An SSDP-DFE belongs to small desalination plants with the capacity of < 10 m3 per day, however, the 
energy intensity of this thermal desalination technology makes the plant viable enough. 

Notwithstanding multiple thermal desalination processes used, multi-stage flash (MSF) desalination is 
the most widely employed one, while MED and mechanical vapor compression desalination find limited use. 
Moreover, even MSF is not exhibiting significant expansion nowadays, and is just upholding its status quo at 
desalination market. This is connected with a relatively higher SEC of these processes as compared to RO. 
According to the study, MSF SEC and MED SEC were estimated as 18 kWh/m3 and 15 kWh/m3, respectively, 
while RO SEC was 5 kWh/m3 [17]. 

Since the gear motors for DPE rotation have high gear ratio, and the rotation speed of the drums does 
not exceed 10 revolutions per minute, the energy consumption is not more than 0.5 kW, thus the daily energy 
consumption to produce one cubic meter of freshwater will not exceed 5 kWh (SEC of ASDP-DFE was ~ 5 
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kWh/m3). This is a very favorable specific energy consumption value even setting aside the fact that this 
energy can be obtained from photovoltaics almost for free. 

The application of fool-proof modular SSDP-DFEs that do not require any consumables for 
desalination process will promote their wider use in the households even notwithstanding their low efficiency, 
and that, in its turn, will pave the way for scaled-up production of such desalination plants and cost reduction.  
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Latin	Symbols		

A Area, m 
1 Energy gain, W/m2 

cP Specific heat, J/kgK 

x Water salinity  
g Gravitational constant, m2/s 

r Enthalpy of vaporization, kJ/kg 
Q Thermal power, W 
Re Reynolds number, dimensionless 

I Solar radiation rate, W/m2 
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d Diameter, m 
P Total system pressure, N/m2 

G Mass flow, kg/s 
K Overall heat transfer coefficient, W/m2K 

m Mass flow rate, kg/s 
s Salt concentration, kgsalt/kgwater 

P Pressure, N/m2 

W Mass flow of evaporated water, kg/s   

t Temperature, K or °C 
q Heat flux density 

  

Greek	Symbols	

α Heat transfer coefficient, W/m K 
υ kinetic viscosity, m2/s 

ε' Emittance factor 
Γ Linear mass density of irrigation, kg/s m 

Π Wetted perimeter, m 

µ Dynamic viscosity, kg/m.s 
ρ Density, kg/m3 

λ Thermal conductivity, W/mK   

Δt Temperature difference, °C 
δ Thickness, m 
  

Subscripts	 	

w water 
sw sea water 
conc concentrate 
wall wall 
wc water solar collector 
sec secondary 
wast wastage 
d hydration 
out out 
ev  evaporation 
sat temperature of saturated 
dep deposition 

 

Acronyms	and	abbreviations		

ZLD zero liquid discharge 
DFE drum film evaporator   
DFEM drum film evaporator module 
sSDP-DFE Self-Powered Solar Desalination Plant based on Drum Film Evaporators 
SWRO Sea Water Reverse Osmosis 
MSE Multi-stage evaporation 
SEC specific energy consumption 
MSF Multi-Stage Flash 
RO reverse osmosis 
MED Multiple-effect distillation or multi-effect distillation 
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TVC Thermal vapor compression 
SV Solenoid valve 

 
 


